
CGS 3763: OS Concepts (Storage Management) Page 1 © Mark Llewellyn

CGS 3763: Operating System Concepts
Spring 2006

Storage Management – Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cgs3763/spr2006

CGS 3763: OS Concepts (Storage Management) Page 2 © Mark Llewellyn

Background
• For most users, the file system is the most visible aspect of an

OS.
• It provides the mechanism for on-line storage of and access to

both data and programs of the OS and all the users of the
computer system.

• The file system consists of two distinct parts: a collection of
files, each storing related data, and a directory structure, which
organizes and provides information about all the files in the
system.

• Files are mapped by the OS onto physical devices, which are
typically nonvolatile.

CGS 3763: OS Concepts (Storage Management) Page 3 © Mark Llewellyn

The File Concept
• A file is a named collection of related information that is recorded

on secondary storage.
• From a user’s perspective, a file is the smallest allotment of logical

secondary storage; that is, data cannot be written to secondary
storage unless they are within a file.

• A file is viewed as a contiguous logical address space.
• Types:

– Data
• numeric
• character
• binary

– Program
• The information in a file is defined by its creator.

CGS 3763: OS Concepts (Storage Management) Page 4 © Mark Llewellyn

File Structure
• A file has a certain structure, which depends on its type.
• None - sequence of words, bytes (text files)
• Simple record structure

– Lines
– Fixed length
– Variable length

• Complex Structures
– Formatted document
– Relocatable load file

• Can simulate last two with first method by inserting appropriate
control characters.

• Who decides:
– Operating system
– Program

CGS 3763: OS Concepts (Storage Management) Page 5 © Mark Llewellyn

File Attributes
• Name – only information kept in human-readable form.

• Identifier – unique tag (number) identifies file within file system.

• Type – needed for systems that support different types.

• Location – pointer to file location on device.

• Size – current file size.

• Protection – controls who can do reading, writing, executing.

• Time, date, and user identification – data for protection, security,
and usage monitoring.

• Information about files are kept in the directory structure, which is
maintained on the disk.

CGS 3763: OS Concepts (Storage Management) Page 6 © Mark Llewellyn

File Operations
• A file is an abstract data type. To define a file properly, we need to

consider the operations that can be performed on files.

• The OS will provide system calls to:

• Create – two steps are necessary to create a file. First, space in the
file system must be found for the file. Second, an entry for the
new file must be made in the directory.

• Write – writing to a file requires a system call specifying both the
name of the file and the information to be written to the file. Given
the name of the file, the system searches the directory to find the
file’s location. The system must maintain a write pointer to the
location in the file where the next write it to take place. The write
pointer must be updated after each write to the file.

CGS 3763: OS Concepts (Storage Management) Page 7 © Mark Llewellyn

File Operations (cont.)

• Read – reading from a file requires a system call that specifies the
name of the file and where (in memory) the next block of the file
should be put. Again, the directory is searched for the associated
entry, and the system must maintain a read pointer to the location in
the file where the next read is to occur. Once the read has taken
place, the read pointer must be updated. Because a process is usually
either reading from or writing to a file, the current operation location
can be maintained as a per-process current-file-position-pointer. Both
the read and write operation use this same pointer, saving space and
reducing system complexity.

• Reposition within file – the directory is searched for the appropriate
file, and the current-file-position-pointer is repositioned to a specified
value. Repositioning with a file need not involve any actual I/O.
This file operation is also known as a file seek.

CGS 3763: OS Concepts (Storage Management) Page 8 © Mark Llewellyn

File Operations (cont.)

• Delete – to delete a file requires searching the directory for the named
file. Having found the associated directory entry, the file space is
released, so that it can be utilized by other files and the directory entry is
erased.

• Truncate – this situation arises when a user wishes to delete the contents
of a file without destroying the attributes of the file. Rather than forcing
the user to delete the file and then recreate it, this capability allows the
attributes to remain unchanged – except for the file length which is reset
to 0 and the file space is released.

• Open(Fi) – search the directory structure on disk for entry Fi, and move
the content of entry to memory, The OS maintains a small table, called
the open-file table, which contains information about all open files.

• Close (Fi) – move the content of entry Fi in memory to directory
structure on disk.

CGS 3763: OS Concepts (Storage Management) Page 9 © Mark Llewellyn

Handling Open Files
• Several pieces of data are needed to manage open files:

– File pointer: pointer to last read/write location, per process that has
the file open.

– File-open count: counter of number of times a file is open – to allow
removal of data from open-file table when last processes closes it.

– Disk location of the file: cache of data access information.

– Access rights: per-process access mode information.

• Some operating systems provide facilities for locking an open file
(or portions of an open file). File locks allow one process to lock a
file and prevent other processes from gaining access to it. This is
useful in environments where files can be shared by several
processes.

CGS 3763: OS Concepts (Storage Management) Page 10 © Mark Llewellyn

Open File Locking
• File locks are utilized to provide synchronization for file access.

• Most systems provide two types of file locks.
– Shared locks – several processes can simultaneously hold a shared lock on

the same file. Used for read access only.

– Exclusive locks – at most one process can hold an exclusive lock on a file at
any given time. Used for write access to a file.

• Locks are used to mediates access to a file.

• The OS may provide either mandatory or advisory file locking
mechanisms:
– Mandatory – access is denied depending on locks held and requested.

– Advisory – processes can find status of locks and decide what to do.

CGS 3763: OS Concepts (Storage Management) Page 11 © Mark Llewellyn

Some Common File Types – Name, Extension

CGS 3763: OS Concepts (Storage Management) Page 12 © Mark Llewellyn

Access Methods
• When the information in a file is to be accessed and stored into the

main memory for use by a user process, the file must be accessed.

• The information in a file can be accessed in several different ways.
Some systems provide only one access method for files. Other
systems, support many different access methods.

• Choosing the correct access method for a file for a particular
application is a major design issue.

CGS 3763: OS Concepts (Storage Management) Page 13 © Mark Llewellyn

Sequential Access Method
• The simplest access method is sequential access.

• Information in the file is processed in order, one record after
another.

• This is by far the most common mode of access. Most editors and
compilers access files in this fashion.

• Reads and writes make up the bulk of the operations on a file.

• A read operation – read next – reads the next portion of the file and
automatically advances a file pointer, which tracks the I/O
location.

CGS 3763: OS Concepts (Storage Management) Page 14 © Mark Llewellyn

Sequential Access Method
• Similarly, a write operation – write next – appends to the end of the file

and advances to the end of the newly written material (the new end of the
file).

• Such a file can be reset to the beginning; and on some systems, a
program may be able to skip forward or backward n records.

• Sequential access is based on a tape model of a file and works as well on
sequential access devices as it does on random access devices.

CGS 3763: OS Concepts (Storage Management) Page 15 © Mark Llewellyn

Direct Access Method
• Another method is direct access (sometimes referred to as relative

access).

• A file made up of fixed-length logical records that allow programs to
read and write records rapidly and in no particular order.

• The direct access model is based on a disk model of a file, since disks
allow random access to any file block.

• For direct access, the file is viewed as a numbered sequence of blocks or
records.

– Thus, a program might read block 14, then read block 436, and then write
block 16.

• There are no restrictions on the order of reading or writing for a
direct file.

CGS 3763: OS Concepts (Storage Management) Page 16 © Mark Llewellyn

Direct Access Method (cont.)
• Direct access files are useful for immediate access to large amounts

of information.

• Database files are often of this type. When a query concerning a
particular subject arrives, the address of the block which contains the
result is calculated and then that block is read directly to provide the
desired information.

• The direct access method requires that the file operations be modified
to include the block number as a parameter.

– Thus, we have read n, where n is the block number, rather than read next as
with sequential access.

• An alternative approach is to retain the original read next operation,
but to add an operation position to n. (See next page.)

– Thus, a read operation would first position to n, then read next.

CGS 3763: OS Concepts (Storage Management) Page 17 © Mark Llewellyn

Simulation of Sequential Access on a Direct Access
File

CGS 3763: OS Concepts (Storage Management) Page 18 © Mark Llewellyn

Comparison of Sequential and Direct
Access Methods

• Sequential Access
read next
write next
reset
no read after last write

(rewrite)
• Direct Access

read n
write n
position to n

read next
write next

rewrite n
where n = relative block number

CGS 3763: OS Concepts (Storage Management) Page 19 © Mark Llewellyn

Other Access Methods
• Other access methods can be built on top of the direct access

method.

• Typically, these methods involve the construction of an index for
the file.

• The index contains pointers to the various blocks of a file. To
find a specific record, first the index is searched and then once the
value is found in the index, the pointer is used to access the file
directly to find the desired record.

CGS 3763: OS Concepts (Storage Management) Page 20 © Mark Llewellyn

Other Access Methods (cont.)

• For example, a retail-price file might list the UPCs for items, with the
associated prices.

• Lets assume that each record consists of a 10-digit UPC and a 6-digit price,
thus each record requires 16 bytes.

• Supposing our disk has 1,024 bytes per block; we can store 64
records/block.

• A file of 120,000 records would occupy 1.92 x 106 bytes (about 2 million
bytes) and require 1875 blocks.

• By keeping the file sorted by UPC, we can define an index consisting of the
first UPC in each block. This index would have 1875 entries of 10 bytes
each, or 18,750 bytes, and as such, could be maintained in main memory.

• To find a particular item, we could perform a binary search of the index and
from this search determine the exact block which contains the desired item.

CGS 3763: OS Concepts (Storage Management) Page 21 © Mark Llewellyn

Other Access Methods (cont.)
block 0

block 1
block 2

block 1875

1 2

64

65

129

130

194

1

65

130

119,936

120,000

3

119,936Index file = 1875
entries (1entry/file

block)

Main file = 1875 blocks
(64 records/ block)

CGS 3763: OS Concepts (Storage Management) Page 22 © Mark Llewellyn

Directory Structure
• The file system of a computer can be extensive.

• Some systems will maintain millions of files on terabytes of disk.

• To manage all of this data, they must be organized in some fashion.
This organization involves the use of directories.

• Although a disk can be used in its entirely to hold a file system, it is
often desirable to use parts of a disk for a file system and other parts
for other things, such as swap space, or unformatted (raw) space.

• These parts of the disk are known variously as partitions, slices, or
minidisks. These various parts can also be combined to create larger
structures known as volumes.

• For now, we’ll simply refer to a chunk of disk storage that holds a
file system as a volume.

CGS 3763: OS Concepts (Storage Management) Page 23 © Mark Llewellyn

Directory Structure (cont.)

• Each volume can be thought of as a virtual disk.

• Volumes can also store multiple operating systems, allowing a
system to boot and run more than one OS.

• Each volume that contains a file system must also contain
information about the files in the system. This information is
maintained in a device directory or volume table of contents.

• The device directory, typically referred to simply as the directory,
records information – such as name, location, size, and type – for all
the files on that volume.

• The illustration on the next page shows a typical file system
organization.

CGS 3763: OS Concepts (Storage Management) Page 24 © Mark Llewellyn

A Typical File-system Organization

CGS 3763: OS Concepts (Storage Management) Page 25 © Mark Llewellyn

Directory Overview
• The directory can be viewed as a symbol table that translates file names into

their directory entries. This allows us to organize the directory in several
different ways.

• When considering a particular directory structure, we need to keep in mind the
operations that will be performed on a directory:
– Search for a file – since files have symbolic names and similar names may indicate a

relationship between files, we may want to be able to find all files whose names
match a particular pattern.

– Create a file – new files need to be created and added to the directory.
– Delete a file – when a file is no longer needed, it needs to be removed from the

directory.
– List a directory – list the files in a directory and the contents of each entry.
– Rename a file – users often change name of a file which may reposition it within the

directory structure.
– Traverse the file system – access every directory and every file within a directory

structure. Often used in backing-up the system.

CGS 3763: OS Concepts (Storage Management) Page 26 © Mark Llewellyn

Organize the Directory (Logically)
• Efficiency – locating a file quickly

• Naming – convenient to users

– Two users can have same name for different files

– The same file can have several different names

• Grouping – logical grouping of files by properties, (e.g., all Java
programs, all games, …)

CGS 3763: OS Concepts (Storage Management) Page 27 © Mark Llewellyn

Single-Level Directory
• The simplest directory structure is the single-level directory.

• All files are contained in the same directory, which is easy to
support and understand.

CGS 3763: OS Concepts (Storage Management) Page 28 © Mark Llewellyn

Single-Level Directory (cont.)

• The single-level directory has serious limitations, however, when
the number of files increases or when the system has more than
one user.

• Since all files are contained in the same directory, they must have
unique names.

– Two different users cannot call their files “test”. Think about a
programming class where maybe all 50 students would call their project
something like “program 2”! This is called file name collision.

• Even a single user on a single-level directory may find it difficult
to remember the names of all the files as the number of files
increases. It is not uncommon for a single user to have several
hundred files or more on one computer system.

CGS 3763: OS Concepts (Storage Management) Page 29 © Mark Llewellyn

Two-Level Directory
• Since the single-level directory leads to file name collision among

different users, the standard solution is to create a separate directory for
each user.

• In the two-level directory structure, each user has their own user file
directory (UFD). When a user job starts or a user logs in, the system’s
master file directory (MFD) is searched. The MFD is indexed by
username or account number and each entry points to the UFD for that
user.

CGS 3763: OS Concepts (Storage Management) Page 30 © Mark Llewellyn

Two-Level Directory (cont.)

• Although the two-level directory structure solves the name-collision
problem, it still has disadvantages.

• This structure effectively isolates one user from another.

• Isolation is an advantage when the users are completely independent but
is a disadvantage when the users want to cooperate on some task and to
access one another’s files.

– Some systems simply do not allow local user files to be accessed by other
users!

• If access is to be permitted, one user must have the ability to
specify a file in another user’s directory. To specify a particular
file uniquely in a two-level directory, you must specify both the
user name and the file name.

CGS 3763: OS Concepts (Storage Management) Page 31 © Mark Llewellyn

Two-Level Directory (cont.)

• A two-level directory can be thought of as a tree (trees are inverted in
computer science), of height 2.

• The root of the tree is the MFD and its children are the UFDs. The
children of the UFDs are the files themselves. The files are the leaves of
the tree.

• Specifying a user name and a file name defines a path in the tree from
the root (the MFD) to a leaf (the specified file).

• Thus, a user name and a file name define a path name.

• Every file in the system has a path name.

• To name a file uniquely, a user must know the path name of the desired
file.

